Files
CHIP-8/src/Interpreter/Interpreter.cpp

649 lines
17 KiB
C++

#include "Interpreter.h"
#include <iostream>
#include <random>
Interpreter::Interpreter(std::shared_ptr<MachineState> machine_state) :
machine_state{std::move(machine_state)},
random_generator{std::random_device{}()}
{
srand(time(nullptr));
for (bool& display : this->machine_state->display)
{
display = rand() % 100 > 50;
}
}
uint16_t Interpreter::get_word(uint16_t address) const
{
const uint8_t high_word = this->machine_state->memory[address];
const uint8_t low_word = this->machine_state->memory[address + 1];
const uint16_t word = high_word << 8 | low_word;
return word;
}
void Interpreter::tick()
{
auto word = this->get_word(this->machine_state->pc);
const auto instruction = this->decode(word, this->machine_state->pc);
this->machine_state->pc += 2;
this->execute_instruction(instruction);
if (this->machine_state->pc >= 0xFFF)
{
std::cout << "PC Outside of memory, going back 0x200" << std::endl;
this->machine_state->pc = 0x200;
}
}
Instruction Interpreter::decode(const uint16_t word, const uint16_t address) const
{
const uint8_t operation = (word & 0xF000) >> 12;
const uint8_t x = (word & 0x0F00) >> 8;
const uint8_t y = (word & 0x00F0) >> 4;
const uint8_t n = word & 0x000F;
const uint8_t kk = word & 0x00FF;
const uint16_t nnn = word & 0x0FFF;
auto op_code = OpCode::NOP;
if (operation == 0)
{
if (kk == 0xE0)
{
op_code = OpCode::CLS;
}
else if (kk == 0xEE)
{
op_code = OpCode::RET;
}
else
{
op_code = OpCode::SYS_ADDR;
}
}
else if (operation == 1)
{
op_code = OpCode::JP_ADDR;
}
else if (operation == 2)
{
op_code = OpCode::CALL_ADDR;
}
else if (operation == 3)
{
op_code = OpCode::SE_VX_BYTE;
}
else if (operation == 4)
{
op_code = OpCode::SNE_VX_BYTE;
}
else if (operation == 5)
{
op_code = OpCode::SE_VX_VY;
}
else if (operation == 6)
{
op_code = OpCode::LD_VX_BYTE;
}
else if (operation == 7)
{
op_code = OpCode::ADD_VX_BYTE;
}
else if (operation == 8)
{
if (n == 0)
{
op_code = OpCode::LD_VX_VY;
}
else if (n == 1)
{
op_code = OpCode::OR_VX_VY;
}
else if (n == 2)
{
op_code = OpCode::AND_VX_VY;
}
else if (n == 3)
{
op_code = OpCode::XOR_VX_VY;
}
else if (n == 4)
{
op_code = OpCode::ADD_VX_VY;
}
else if (n == 5)
{
op_code = OpCode::SUB_VX_VY;
}
else if (n == 6)
{
op_code = OpCode::SHR_VX_VY;
}
else if (n == 7)
{
op_code = OpCode::SUBN_VX_VY;
}
else if (n == 0xE)
{
op_code = OpCode::SHL_VX_VY;
}
}
else if (operation == 9)
{
op_code = OpCode::SNE_VX_VY;
}
else if (operation == 0xA)
{
op_code = OpCode::LD_I_ADDR;
}
else if (operation == 0xB)
{
op_code = OpCode::JP_V0_ADDR;
}
else if (operation == 0xC)
{
op_code = OpCode::RND_VX_BYTE;
}
else if (operation == 0xD)
{
op_code = OpCode::DRW_VX_VY_NIBBLE;
}
else if (operation == 0xE)
{
if (kk == 0x9E)
{
op_code = OpCode::SKP_VX;
}
else if (kk == 0xA1)
{
op_code = OpCode::SKNP_VX;
}
}
else if (operation == 0xF)
{
if (kk == 0x07)
{
op_code = OpCode::LD_VX_DT;
}
else if (kk == 0x0A)
{
op_code = OpCode::LD_VX_K;
}
else if (kk == 0x15)
{
op_code = OpCode::LD_DT_VX;
}
else if (kk == 0x18)
{
op_code = OpCode::LD_ST_VX;
}
else if (kk == 0x1E)
{
op_code = OpCode::ADD_I_VX;
}
else if (kk == 0x29)
{
op_code = OpCode::LD_F_VX;
}
else if (kk == 0x33)
{
op_code = OpCode::LD_B_VX;
}
else if (kk == 0x55)
{
op_code = OpCode::LD_I_VX;
}
else if (kk == 0x65)
{
op_code = OpCode::LD_VX_I;
}
}
return Instruction{
.op_code = op_code,
.address = address,
.operation = operation,
.instruction = word,
.x = x,
.y = y,
.n = n,
.kk = kk,
.nnn = nnn
};
}
std::vector<Instruction> Interpreter::disassembly() const
{
std::vector<Instruction> instructions(std::size(machine_state->memory) / 2);
for (std::size_t address = 0; address < std::size(machine_state->memory); address += 2)
{
const auto word = this->get_word(address);
instructions[address / 2] = (this->decode(word, address));
}
return instructions;
}
void Interpreter::execute_instruction(const Instruction& instruction)
{
if (instruction.op_code == OpCode::CLS) this->cls();
else if (instruction.op_code == OpCode::RET) this->ret();
else if (instruction.op_code == OpCode::SYS_ADDR) this->sys_addr();
else if (instruction.op_code == OpCode::JP_ADDR) this->jp_addr(instruction);
else if (instruction.op_code == OpCode::CALL_ADDR) this->call_addr(instruction);
else if (instruction.op_code == OpCode::SE_VX_BYTE) this->se_vx_byte(instruction);
else if (instruction.op_code == OpCode::SNE_VX_BYTE) this->sne_vx_byte(instruction);
else if (instruction.op_code == OpCode::SE_VX_VY) this->se_vx_vy(instruction);
else if (instruction.op_code == OpCode::LD_VX_BYTE) this->ld_vx_byte(instruction);
else if (instruction.op_code == OpCode::ADD_VX_BYTE) this->add_vx_byte(instruction);
else if (instruction.op_code == OpCode::LD_VX_VY) this->ld_vx_vy(instruction);
else if (instruction.op_code == OpCode::OR_VX_VY) this->or_vx_vy(instruction);
else if (instruction.op_code == OpCode::AND_VX_VY) this->and_vx_vy(instruction);
else if (instruction.op_code == OpCode::XOR_VX_VY) this->xor_vx_vy(instruction);
else if (instruction.op_code == OpCode::ADD_VX_VY) this->add_vx_vy(instruction);
else if (instruction.op_code == OpCode::SUB_VX_VY) this->sub_vx_vy(instruction);
else if (instruction.op_code == OpCode::SHR_VX_VY) this->shr_vx_vy(instruction);
else if (instruction.op_code == OpCode::SUBN_VX_VY) this->subn_vx_vy(instruction);
else if (instruction.op_code == OpCode::SHL_VX_VY) this->shl_vx_vy(instruction);
else if (instruction.op_code == OpCode::SNE_VX_VY) this->sne_vx_vy(instruction);
else if (instruction.op_code == OpCode::LD_I_ADDR) this->ld_i_addr(instruction);
else if (instruction.op_code == OpCode::JP_V0_ADDR) this->jp_v0_addr(instruction);
else if (instruction.op_code == OpCode::RND_VX_BYTE) this->rnd_vx_byte(instruction);
else if (instruction.op_code == OpCode::DRW_VX_VY_NIBBLE) this->drw_vx_vy_nibble(instruction);
else if (instruction.op_code == OpCode::SKP_VX) this->skp_vx(instruction);
else if (instruction.op_code == OpCode::SKNP_VX) this->sknp_vx(instruction);
else if (instruction.op_code == OpCode::LD_VX_DT) this->ld_vx_dt(instruction);
else if (instruction.op_code == OpCode::LD_VX_K) this->ld_vx_k(instruction);
else if (instruction.op_code == OpCode::LD_DT_VX) this->ld_dt_vx(instruction);
else if (instruction.op_code == OpCode::LD_ST_VX) this->ld_st_vx(instruction);
else if (instruction.op_code == OpCode::ADD_I_VX) this->add_i_vx(instruction);
else if (instruction.op_code == OpCode::LD_F_VX) this->ld_f_vx(instruction);
else if (instruction.op_code == OpCode::LD_B_VX) this->ld_b_vx(instruction);
else if (instruction.op_code == OpCode::LD_I_VX) this->ld_i_vx(instruction);
else if (instruction.op_code == OpCode::LD_VX_I) this->ld_vx_i(instruction);
else if (instruction.op_code == OpCode::NOP) this->nop();
}
void Interpreter::sys_addr() const
{
// NOP
}
void Interpreter::nop() const
{
// NOP
}
void Interpreter::cls() const
{
this->machine_state->display.fill(false);
}
void Interpreter::ret() const
{
this->machine_state->sp -= 1;
this->machine_state->pc = this->machine_state->stack[this->machine_state->sp];
this->machine_state->stack[this->machine_state->sp] = 0;
}
void Interpreter::jp_addr(const Instruction& instruction) const
{
this->machine_state->pc = instruction.nnn;
}
void Interpreter::call_addr(const Instruction& instruction) const
{
this->machine_state->stack[this->machine_state->sp] = this->machine_state->pc;
this->machine_state->sp += 1;
this->machine_state->pc = instruction.nnn;
}
void Interpreter::se_vx_byte(const Instruction& instruction) const
{
if (this->machine_state->v[instruction.x] == instruction.kk)
{
this->machine_state->pc += 2;
}
}
void Interpreter::sne_vx_byte(const Instruction& instruction) const
{
if (this->machine_state->v[instruction.x] != instruction.kk)
{
this->machine_state->pc += 2;
}
}
void Interpreter::se_vx_vy(const Instruction& instruction) const
{
if (this->machine_state->v[instruction.x] == this->machine_state->v[instruction.y])
{
this->machine_state->pc += 2;
}
}
void Interpreter::ld_vx_byte(const Instruction& instruction) const
{
this->machine_state->v[instruction.x] = instruction.kk;
}
void Interpreter::add_vx_byte(const Instruction& instruction) const
{
auto& vx = this->machine_state->v[instruction.x];
vx = (vx + instruction.kk) & 0xFF;
}
void Interpreter::ld_vx_vy(const Instruction& instruction) const
{
this->machine_state->v[instruction.x] = this->machine_state->v[instruction.y];
}
void Interpreter::or_vx_vy(const Instruction& instruction) const
{
this->machine_state->v[instruction.x] |= this->machine_state->v[instruction.y];
}
void Interpreter::and_vx_vy(const Instruction& instruction) const
{
this->machine_state->v[instruction.x] &= this->machine_state->v[instruction.y];
}
void Interpreter::xor_vx_vy(const Instruction& instruction) const
{
this->machine_state->v[instruction.x] ^= this->machine_state->v[instruction.y];
}
void Interpreter::add_vx_vy(const Instruction& instruction) const
{
auto& vx = this->machine_state->v[instruction.x];
const auto& vy = this->machine_state->v[instruction.y];
auto& vf = this->machine_state->v[0xF];
if (vx + vy > 0x100)
{
vf = 1;
}
else
{
vf = 0;
}
vx = (vx + vy) & 0xFF;
}
void Interpreter::sub_vx_vy(const Instruction& instruction) const
{
auto& vx = this->machine_state->v[instruction.x];
const auto& vy = this->machine_state->v[instruction.y];
auto& vf = this->machine_state->v[0xF];
if (vx >= vy)
{
vf = 1;
}
else
{
vf = 0;
}
vx = (vx - vy) & 0xFF;
}
void Interpreter::shr_vx_vy(const Instruction& instruction) const
{
auto& vx = this->machine_state->v[instruction.x];
const auto& vy = this->machine_state->v[instruction.y];
auto& vf = this->machine_state->v[0xF];
if (quirks & static_cast<uint8_t>(InterpreterQuirks::COSMAC_SHIFT))
{
vx = vy;
}
if (vx & 0x01)
{
vf = 1;
}
else
{
vf = 0;
}
vx = vx >> 1;
}
void Interpreter::subn_vx_vy(const Instruction& instruction) const
{
auto& vx = this->machine_state->v[instruction.x];
const auto& vy = this->machine_state->v[instruction.y];
auto& vf = this->machine_state->v[0xF];
if (vy >= vx)
{
vf = 1;
}
else
{
vf = 0;
}
vx = (vy - vx) & 0xFF;
}
void Interpreter::shl_vx_vy(const Instruction& instruction) const
{
auto& vx = this->machine_state->v[instruction.x];
const auto& vy = this->machine_state->v[instruction.y];
auto& vf = this->machine_state->v[0xF];
if (this->quirks & static_cast<uint8_t>(InterpreterQuirks::COSMAC_SHIFT))
{
vx = vy;
}
if (vx & 0x80)
{
vf = 1;
}
else
{
vf = 0;
}
vx = vx << 1 & 0xFF;
}
void Interpreter::sne_vx_vy(const Instruction& instruction) const
{
if (this->machine_state->v[instruction.x] != this->machine_state->v[instruction.y])
{
this->machine_state->pc += 2;
}
}
void Interpreter::ld_i_addr(const Instruction& instruction) const
{
this->machine_state->i = instruction.nnn;
}
void Interpreter::jp_v0_addr(const Instruction& instruction) const
{
if (this->quirks & static_cast<uint8_t>(InterpreterQuirks::SUPER_CHIP_JUMP))
{
this->machine_state->pc = instruction.nnn + this->machine_state->v[instruction.x];
}
else
{
this->machine_state->pc = instruction.nnn + this->machine_state->v[0];
}
}
void Interpreter::rnd_vx_byte(const Instruction& instruction)
{
auto distribution = std::uniform_int_distribution<uint8_t>(0, 0xFF);
const auto value = distribution(this->random_generator);
this->machine_state->v[instruction.x] = value & instruction.kk;
}
void Interpreter::drw_vx_vy_nibble(const Instruction& instruction) const
{
const auto& memory = this->machine_state->memory;
auto& display = this->machine_state->display;
const auto& vx = this->machine_state->v[instruction.x];
const auto& vy = this->machine_state->v[instruction.y];
auto& vf = this->machine_state->v[0xF];
const auto& i = this->machine_state->i;
const uint8_t start_x = vx & 63;
const uint8_t start_y = vy & 31;
vf = 0;
for (auto row = 0; row < instruction.n; row++)
{
const auto current_y = start_y + row;
if (current_y > 31)
{
break;
}
const auto sprite_byte = memory[i + row];
for (auto bit = 0; bit < 8; bit++)
{
const auto current_x = start_x + bit;
if (current_x > 63)
{
break;
}
const auto pixel = sprite_byte >> (7 - bit) & 0x01;
const auto index = current_y * 64 + current_x;
if (pixel)
{
if (display[index])
{
display[index] = false;
vf = 1;
}
else
{
display[index] = true;
}
}
}
}
}
void Interpreter::skp_vx(const Instruction& instruction) const
{
if (this->machine_state->keyboard & 1 << instruction.x)
{
this->machine_state->pc += 2;
}
}
void Interpreter::sknp_vx(const Instruction& instruction) const
{
if (!(this->machine_state->keyboard & 1 << instruction.x))
{
this->machine_state->pc += 2;
}
}
void Interpreter::ld_vx_dt(const Instruction& instruction) const
{
this->machine_state->v[instruction.x] = this->machine_state->dt;
}
void Interpreter::ld_vx_k(const Instruction& instruction) const
{
if (this->machine_state->keyboard == 0)
{
this->machine_state->pc -= 2;
return;
}
for (auto key = 0; key < 16; key++)
{
if (this->machine_state->keyboard & 1 << key)
{
this->machine_state->v[instruction.x] = key;
break;
}
}
}
void Interpreter::ld_dt_vx(const Instruction& instruction) const
{
this->machine_state->dt = this->machine_state->v[instruction.x];
}
void Interpreter::ld_st_vx(const Instruction& instruction) const
{
this->machine_state->st = this->machine_state->v[instruction.x];
}
void Interpreter::add_i_vx(const Instruction& instruction) const
{
this->machine_state->i += this->machine_state->v[instruction.x];
}
void Interpreter::ld_f_vx(const Instruction& instruction) const
{
this->machine_state->i = (this->machine_state->v[instruction.x] & 0xF) * 5 + 0x50;
}
void Interpreter::ld_b_vx(const Instruction& instruction) const
{
const auto number = this->machine_state->v[instruction.x];
this->machine_state->memory[this->machine_state->i] = number / 100;
this->machine_state->memory[this->machine_state->i + 1] = (number - this->machine_state->memory[this->machine_state
->i] * 100) / 10;
this->machine_state->memory[this->machine_state->i + 2] = number - this->machine_state->memory[this->machine_state->
i] * 100 - this->machine_state->memory[this->machine_state->i + 1] * 10;
}
void Interpreter::ld_i_vx(const Instruction& instruction) const
{
const bool use_quirk = this->quirks & static_cast<uint8_t>(InterpreterQuirks::COSMAC_STORE_AND_LOAD);
for (auto reg = 0; reg <= instruction.x; reg++)
{
if (use_quirk)
{
this->machine_state->memory[this->machine_state->i] = this->machine_state->v[reg];
this->machine_state->i++;
}
else
{
this->machine_state->memory[this->machine_state->i + reg] = this->machine_state->v[reg];
}
}
}
void Interpreter::ld_vx_i(const Instruction& instruction) const
{
const bool use_quirk = this->quirks & static_cast<uint8_t>(InterpreterQuirks::COSMAC_STORE_AND_LOAD);
for (auto reg = 0; reg <= instruction.x; reg++)
{
if (use_quirk)
{
this->machine_state->v[reg] = this->machine_state->memory[this->machine_state->i];
this->machine_state->i++;
}
else
{
this->machine_state->v[reg] = this->machine_state->memory[this->machine_state->i + reg];
}
}
}